在排列组合问题中,我们经常使用加法原理和乘法原理,加法原理主要是针对分类法,而乘法原理则主要针对是分步法。下面广东公务员考试网将为各位考生详细分析排列组合问题中的这两大原理。
分类法即将完成任务的各种情况进行分类,每类都可以完成这项任务,每类之间是一种“或……或……”的关系,最后将每类的情况数进行简单的相加即可。加法原理:完成一件事有k类方法,第一类方法中有m1种不同的方法,第二类方法中有m2种不同的方法,……第k类方法中有mk种不同的方法。那么完成这件事共有 m1+m2+…+mk 种不同的方法。
【例1】从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?
【解析】从甲地到乙地,可以乘火车、汽车、轮船,每种交通方式都可以完成“从甲地到乙地”这项任务,所以我们应当使用分类法即加法原理,则总共应有4+3+2=9种走法。
而分步法则针对的是此任务需要若干个步骤,步骤之间是“先……后……”的关系,必须依次按照步骤才能完成此项任务,其总的情况数就是将每一步的情况数进行简单的相乘。
【例2】从甲地到乙地有3条路线,从乙到丙地4条路线,从丙地到丁地有2条路线,从甲地经过乙地、丙地到丁地不同走法共有多少?
【解析】从甲要到丁地必须依次经过乙、丙,要就是说要完成从甲到丁这件任务,有三个必不可少的步骤,第一步,需要从甲到乙,有3种方法;第二步,从乙到丙,有4种方法;第三步,从丙到丁,有2种方法。因此总的情况数就应该等于完成这项任务的各步情况数相乘即3×4×2=24种方法。
【例3】用彩旗表示信号,不同面数,不同颜色,排列顺序不同,都表示不同的信号。如果一根旗杆上同时最多可以挂3面旗,现有足够的红色和黄色彩旗。可以表示多少种不同的信号?
【解析】要完成挂旗这项任务,我们可以挂一面旗、挂两面旗、挂三面旗,每一个都可以完成这项任务。因此,可以分成上述三类,即第一类,一面旗;第二类,两面旗;第三类,三面旗,然后再将每一类的情况数进行简单的相加。接下来,我们得研究下每一类的情况数。
第一类、一面旗。红黄各一种。
第二类、两面旗。
现在有两个位置依次为A B。这两个位置需要一步一步来进行填,我们第一步先填A,有两种(红、黄),第二步,我们填B,依然有两种(红黄),则其有2×2=4种。
第三类、三面旗。
这时候有三个位置,依次为A B C。和两面旗道理一样,每一个位置都有两种填法,则其有2×2×2=8种。
则总的情况数为三类之和即2+4+8=14种。
小结:用加法原理和乘法原理求“完成一件事的方法总数”时,一般按以下的思路分析:
1.完成一件什么事?
2.怎样完成这件事?
能直接完成的考虑怎样分类,每类有几种方法
分步骤完成的考虑怎样分步骤,每步有几种方法
3.确定用加法原理还是乘法原理解题,或者加法原理,乘法原理都使用?
行测更多解题思路和解题技巧,可参看2014年公务员考试技巧手册。